“大家注意,这次实验我们要密切关注溶液的浓度变化和晶体生长的速率。一旦发现异常,立即调整参数。”李教授叮嘱道。
技术人员小张紧盯着电脑屏幕上的数据,说道:“教授,目前溶液的浓度保持稳定,但晶体生长速率略有波动,可能是分子束的能量稍有偏差。”
李教授思考片刻,说:“微调分子束的能量,增加 05,看看效果如何。同时,加强对温度梯度的监测,确保其均匀性。”
经过多次调整和实验,终于成功地生长出了一块初步符合要求的非线性光学晶体。通过同步辐射 x 射线衍射技术和高分辨率显微镜成像技术的检测,发现晶体内部缺陷明显减少,纯度和均匀性都有了很大提高。
“我们终于取得了初步突破!”李教授兴奋地对团队成员说道,“但是,这还远远不够,我们需要进一步优化工艺参数,提高晶体的质量和尺寸。”
与此同时,在激光晶体加工车间,陈教授带领的团队正在对激光晶体进行超精密加工。纳米级精度的金刚石刀具在晶体表面缓缓划过,发出轻微的嗡嗡声,研磨盘高速旋转,抛光液均匀地涂抹在晶体表面。
“这个切割深度一定要控制在极小的范围内,任何偏差都可能导致晶体表面的损伤。”陈教授叮嘱着操作人员。
操作人员小李小心翼翼地操作着设备,额头上渗出了细密的汗珠。“教授,目前切割过程还算顺利,但在研磨阶段,我们发现晶体表面的平整度还没有达到预期要求。”
陈教授仔细观察着晶体表面,说:“调整研磨盘的转速和压力,增加抛光液的浓度,再试一次。我们必须确保晶体表面的平整度达到纳米级精度。”
经过反复的试验和改进,激光晶体的加工精度和表面质量逐渐达到了设计要求。
在装备研制方面,王教授和他的团队也在紧锣密鼓地开展工作。他们设计了一种全新的高功率激光脉冲电源和脉冲调制系统,采用了最先进的电子元件和控制算法。
“我们