“我们要通过大量的仿真实验来验证这个算法的有效性和稳定性。”刘祖训对团队成员说道。
在仿真实验中,团队成员发现,在电网发生故障或负荷突变等复杂工况下,基于 mpc 的控制算法能够快速响应,有效地调节电压和功率,保持系统的稳定运行。
“刘老师,这个算法的效果比我们预期的要好。但是,在实际应用中,可能会面临计算量较大的问题,需要进一步优化算法的计算效率。”团队成员小张说道。
刘祖训点头表示赞同:“你说得对。我们可以采用一些简化的模型和算法技巧,减少不必要的计算量,同时保证控制性能不受影响。”
直流电缆研发方面,陈博士和他的团队经过多次试验,成功地合成了一种新型的纳米复合绝缘材料。通过微观结构分析和性能测试,发现这种材料的绝缘性能和耐电晕性能都有了显着提高。
“我们终于取得了突破!这种新型材料有望解决直流电缆的绝缘难题。”陈博士兴奋地对团队成员说道。
将这种材料应用于实际电缆制造过程中,又遇到了新的问题。由于纳米颗粒的团聚现象,导致材料的性能出现了波动,影响了电缆的质量。
“我们必须找到一种有效的方法来解决纳米颗粒的团聚问题。”陈博士皱着眉头说道。
经过查阅大量文献和反复试验,团队采用了一种表面改性剂对纳米颗粒进行处理,成功地改善了其分散性,使得新型绝缘材料能够稳定地应用于直流电缆制造中。
随着各个关键技术的突破,团队开始进行柔性直流输电系统的样机搭建和测试工作。
在实验室的测试场地,一台小型的柔性直流输电系统样机矗立在那里,各种仪器设备连接在周围,技术人员们忙碌地进行着最后的调试工作。
“准备好了吗?开始进行系统测试!”赵飞扬下达了指令。
测试过程中,系统首先在低功率下运行,各项参数都表现正常。随着功率逐渐增加,技术人员密切关注着系统的运行状态。
“电压和功率控制稳定,换流器和直流电缆工作正常。